Time course of dynamic range adaptation in the auditory nerve.
نویسندگان
چکیده
Auditory adaptation to sound-level statistics occurs as early as in the auditory nerve (AN), the first stage of neural auditory processing. In addition to firing rate adaptation characterized by a rate decrement dependent on previous spike activity, AN fibers show dynamic range adaptation, which is characterized by a shift of the rate-level function or dynamic range toward the most frequently occurring levels in a dynamic stimulus, thereby improving the precision of coding of the most common sound levels (Wen B, Wang GI, Dean I, Delgutte B. J Neurosci 29: 13797-13808, 2009). We investigated the time course of dynamic range adaptation by recording from AN fibers with a stimulus in which the sound levels periodically switch from one nonuniform level distribution to another (Dean I, Robinson BL, Harper NS, McAlpine D. J Neurosci 28: 6430-6438, 2008). Dynamic range adaptation occurred rapidly, but its exact time course was difficult to determine directly from the data because of the concomitant firing rate adaptation. To characterize the time course of dynamic range adaptation without the confound of firing rate adaptation, we developed a phenomenological "dual adaptation" model that accounts for both forms of AN adaptation. When fitted to the data, the model predicts that dynamic range adaptation occurs as rapidly as firing rate adaptation, over 100-400 ms, and the time constants of the two forms of adaptation are correlated. These findings suggest that adaptive processing in the auditory periphery in response to changes in mean sound level occurs rapidly enough to have significant impact on the coding of natural sounds.
منابع مشابه
Time course of dynamic range adaptation in the auditory nerve 1
Time course of dynamic range adaptation in the auditory nerve 1 Bo Wen, Grace I. Wang, Isabel Dean, and Bertrand Delgutte 2 Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, Department of Otology and 3 Laryngology, Harvard Medical School, Boston, MA 02115, Department of Electrical Engineering and Computer 4 Science and Research Laboratory of Electronics, MIT, Ca...
متن کاملPower-law dynamics in an auditory-nerve model can account for neural adaptation to sound-level statistics.
Neurons in the auditory system respond to recent stimulus-level history by adapting their response functions according to the statistics of the stimulus, partially alleviating the so-called "dynamic-range problem." However, the mechanism and source of this adaptation along the auditory pathway remain unknown. Inclusion of power-law dynamics in a phenomenological model of the inner hair cell (IH...
متن کاملDynamic range adaptation to sound level statistics in the auditory nerve.
The auditory system operates over a vast range of sound pressure levels (100-120 dB) with nearly constant discrimination ability across most of the range, well exceeding the dynamic range of most auditory neurons (20-40 dB). Dean et al. (2005) have reported that the dynamic range of midbrain auditory neurons adapts to the distribution of sound levels in a continuous, dynamic stimulus by shiftin...
متن کاملRapid neural adaptation to sound level statistics.
Auditory neurons must represent accurately a wide range of sound levels using firing rates that vary over a far narrower range of levels. Recently, we demonstrated that this "dynamic range problem" is lessened by neural adaptation, whereby neurons adjust their input-output functions for sound level according to the prevailing distribution of levels. These adjustments in input-output functions i...
متن کاملDirect comparison between properties of adaptation of the auditory nerve and the ventral cochlear nucleus in response to repetitive clicks.
The present study was designed to complete two previous reports [Loquet, G., Rouiller, E.M., 2002. Neural adaptation to pulsatile acoustical stimulation in the cochlear nucleus of the rat. Hear. Res. 171, 72-81; Loquet, G., Meyer, K., Rouiller, E.M., 2003. Effects of intensity of repetitive acoustic stimuli on neural adaptation in the ventral cochlear nucleus of the rat. Exp. Brain Res. 153, 43...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 108 1 شماره
صفحات -
تاریخ انتشار 2012